Thursday, January 26, 2006

Phosphorus History

Phosphorus (Greek phosphoros, meaning "light bearer" which was the ancient name for the planet Venus) was discovered by German alchemist Hennig Brand in 1669 through a preparation from urine. Working in Hamburg, Brand attempted to distill salts by evaporating urine, and in the process produced a white material that glowed in the dark and burned brilliantly. Since that time, phosphorescence has been used to describe substances that shine in the dark without burning.

Early matches used white phosphorus in their composition, which was dangerous due to its toxicity. Murders, suicides and accidental poisonings resulted from its use (An apocryphal tale tells of a woman attempting to murder her husband with white phosphorus in his food, which was detected by the stew giving off luminous steam). In addition, exposure to the vapors gave match workers a necrosis of the bones of the jaw, the infamous "phossy-jaw." When red phosphorus was discovered, with its far lower flammability and toxicity, it was adopted as a safer alternative for match manufacture.


Due to its reactivity to air and many other oxygen containing substances, phosphorus is not found free in nature but it is widely distributed in many different minerals. Phosphate rock, which is partially made of apatite (an impure tri-calcium phosphate mineral) is an important commercial source of this element. Large deposits of apatite are in Russia, Morocco, Florida, Idaho, Tennessee, Utah, and elsewhere. There are however concerns over how long these phosphorus deposits will last. USA will deplete their deposits around 2035. China and Morocco have the largest known deposits today, but they too will eventually be depleted. During that depletion there could be a serious problem for the worlds food production since phosphorus is such an essential ingredient in fertilizers.

The white allotrope can be produced using several different methods. In one process, tri-calcium phosphate, which is derived from phosphate rock, is heated in an electric or fuel-fired furnace in the presence of carbon and silica. Elemental phosphorus is then liberated as a vapor and can be collected under phosphoric acid.

0 Comments:

Post a Comment

<< Home